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Representations of S, x U(N) in repeated tensor products of 
the unitary groups 

W H Klink+$ and Tuong Ton-That$ 
', Department of Phksics and Astronomy, The UniLersit! of loud, Iowa C'ity, I A  52242, L'SA 
7 Department of' Mathematics,  The UniLersity of loIra,  Iowa Cit!. IA 52242. [:SA 

Receiied 14 October 1989 

Abstract. The  n-fold tensor product space generated bq a g i \ e n  irreducible representation 
of the unitary group U(  N )  i s  a representation space for the symmetric group S ,  ah uel l  
as for LI .Y) .  Using ideas from the theory of dual pairs, such tensor product spaces are 
decomposed into irreducible representations of UI .Vi times reducible representations of 
S J , .  Computationally effectiLe formulae for the multiplicitq of irreducible representations 
of S, ,  are given. Generating sets of invariant polynomials from the en\eloping algebra of 
UI .VI that  commute with the S, ,  action are  exhibited; i t  i s  shown that the eigenialue\ of 
such operators can be used to break the multiplicity occurring in the dual U (  ,V 1 x S, ,  ;ictioti. 

1.  Introduction 

A problem of recurring interest in mathematical physics is that of finding the types of 
irreducible representations of the symmetric group that occur in  the decomposition of 
the n-fold tensor product representations of a given group. In  particular, such problems 
arise when identical representations are coupled together and one wishes to find the 
symmetric or  antisymmetric representations of the symmetric group, corresponding to 
fermionic or bosonic type systems. 

The classic example of such types of problems is the Schur-Weyl duality theorem 
icf Weyl 1946 or Zelobenko 1973), which states that if the natural representation of 
the unitary group U (  N )  (o r  equivalently, of the general linear group GL( N ,  C)) is 
tensored n times, then under the joint action of the symmetric group S,, and GL( N ,  C) 
this tensor product is decomposed into a direct sum of multiplicity-free irreducible 
subrepresentations uniquely labelled by Young diagrams. We will give a very simple 
proof of this result in section 5. What we wish to d o  in this paper is to give a procedure 
for explicitly decomposing n-fold tensor product S, x GL( N,  C) modules of repeated 
irreducible representations of GL( N ,  C) with signatures of the form ( M ,  0 , .  . . , 0) and 
not just the natural representation (signature (1,0, . . . , 0 ) ) .  Obviously the decomposi- 
tion of S,, x GL( n, C)-modules is not multiplicity-free, as the simple example (4 ,0,0)0 
14,0, 0 ) 8 ( 4 , 0 , 0 )  in section 5 already shows. To break these multiplicities we shall 
make use of S,,-invariant differential operators; this conforms with our general method 
of using invariant differential operators of various groups to resolve the multiplicity 
problem as shown in Klink and Ton-That (1988, 1989a, b). Section 4 deals with these 
S,,-invariant differential operators. To carry out our procedure we also make use of 
the theory of dual pairs as discussed in Moshinsky and Quesne (1970), Howe (1985, 
1987), Klink and  Ton-That (I988,1989a, b) .  The theory of dual pairs provides a natural 
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setting for generalising the Schur-Weyl duality type problems, not only for U(  N ) ,  but 
for all the compact groups. The notion of dual pairs is discussed in section 2 ,  and in 
section 3 we will show how the problem is connected with the notion of representations 
of the Weyl group of G L ( n , C )  on the zero-weight spaces of GL(n,C)-modules.  
Combining the theory of dual pairs with the notion of zero-weight spaces gives the 
multiplicity of the representations of the symmetric group S, (considered as the Weyl 
group of GL(  n, C)) in n-fold tensor products of representations of GL(  N, C )  with 
signature ( M ,  0, . . . , 0), but unfortunately all known formulae concerning this multi- 
plicity (cf Gutkin 1973, Kostant 1975, Ariki et a1 1985) are sufficiently complicated 
when n becomes so large as to not be very useful computationally. So in section 5 we 
present a computationally useful way, especially adaptable to computers, of finding 
symmetric group multiplicities, by showing how to calculate the (generally) reducible 
characters of the symmetric group S,, and more importantly, how to break these 
multiplicities using S,-invariant differential operators. Several examples illustrate the 
use of our method for calculating characters of S,.  We conclude with a brief discussion 
on the generalisation of our result to n-fold tensor products of arbitrary irreducible 
representations of GL(  N, C) of the same signature. 

2. Representations of the symmetric group S ,  and dual pairs 

Let C n x '  denote the vector space of n x N  complex matrices. Let d Z =  
I7 dX,] d Yl, (Z,] = X, ,  +J-'l Y,,, 1 s i s n, 1 s j  s N )  denote the Lebesgue product 
measure on R"'. Define a Gaussian measure d p  on Cflx'  by 

d p ( Z )  = T-"' exp[-tr(ZZ')] dZ. 

Let 9= 9 ( C n X " )  be the Hilbert space of all holomorphic entire functions F on CnXJ' 
which are square integrable, i.e. Jzj>.\ iF(Z)12 d p ( Z )  <CO. In Klink and  Ton-That 
(1989b) it is shown that the integration inner product of 9 is identical to the computa- 
tionally more useful differentiation inner product 

(2.1) 

where F (  D )  denotes the differential operator formally obtained from the infinite series 
F ( Z )  by replacing 2, by d /dZ , , .  Such an  inner product is useful because, as will be 

( F ,  3 F2) = FI(D)F2(~)IZ-O 

shown, the irreducible representation spaces of GL(  N, 6) are given by polynomials 
in 9. 

The action of GL( N, C) on 9 is given by right translation 

[ R ( g ) F I ( Z )  = F ( Z g )  g E G L ( N , @ )  (2.2) 

[ L ( h ' ) F ] ( Z )  = F ( ( h ' ) - ' z )  h' E GL(  n, C). (2.3) 

and  is highly reducible. Similarly, GL(n, C) acts on 9 by left translation 

Let r denote the minimum of n and  N and let ( m )  = ( m i ,  . . . , m,) be an r-tuple of 
non-negative integers satisfying the dominant condition mi 2 m2 2 ,  . .2 m,. Then 
models of irreducible representations of GL(N,  C) (respectively, GL( n, e ) )  of signature 
( m )  can be realised in 9 as follows. Let Bb (respectively, BL) denote the Bore1 
subgroup of GL(N,  C )  (respectively, GL(  n, C)) consisting of upper triangular (respec- 
tively, lower triangular) matrices. 
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Set 

V " " ' = { F E 9 :  F(Zb)=b:l . . .  bz,F(Z),VbEB,} 

V " " = { F E ~ :  F (Zb)=b ; l i  . . .  b z , F ( Z ) , V l ? E B b }  
(2.4) 

then the representation of GL( N, C) (respectively, GL( n, C)) obtained by right transla- 
tion (respectively, left translation) on V'" '  (respectively, on V"")) is irreducible with 
signature ( m ) .  

Now under the joint action L(h ' )O  R(g)  of GL(n, C) and GL( N, C) the Fock space 
9 is decomposed into irreducible submodules 

where ( m )  ranges over all r-tuples of integers such that m, 2 m z 2 . .  - 2  m, 3 0 and 
where 9'"' denotes the isotypic component of ( m )  in 9. The isotypic component 
9'"' is the sum of all GL( N, @)-submodules in 9 which are isomorphic to V'"'; or 
equivalently, the sum of all GL(n, @)-submodules in 9 that are isomorphic to V""". 
It can be shown that 9") is generated by L ( h ' ) F ,  h'EGL(n,C),  F E  V'"; or 
equivalently, by R ( g ) F ' ,  g E GL(N, C), F'E V"" (cf Zelobenko 1970, chapter VI11 
or Howe 1987). 

Of central interest in this paper is the n-fold tensor product 
V' M,O.. .,U) 0,. .@ V'U.0 ...., 01 

N ,& 

Since the representation V!TU3...." is repeated n times, the symmetric group S, of 
permutations on n elements also acts on this tensor product. The natural space for 
studying the decomposition of this joint action of S, x GL( N, C) is the Fock space 9. 
Indeed, let DL denote the diagonal subgroup of GL(n, C) and define the subspace 

(2.6) 

where Id'l denotes the determinant of d ' .  It was shown in Klink and Ton-That (1989b) 
is isomorphic to V'M.o.....o' 0. . .O V'".o,....o' ( n  times) with the joint action 

of S, x GL(n, C)  on 9'A'.-'w' given by 

(2.7) 

Our problem can be set in the context of reductive dual pairs as follows. By 
definition a reductive dual pair of groups (G', G) acting on 9 is a pair of reductive 
groups whose representations on 9 are such that one group is the centraliser of the 
other and vice-versa (see Howe 1985). Let G = GL( N, C) x . . . x GL( N, C) ( n  times); 
then the action of G on 9 is again given by 

pl M+) of 9 by 

pi .M, ..., M ! - -{FE 9: F(d'Z) = d l " ' .  . . dkb"F(Z) = l d r l U F ( Z ) ,  V d ' E  DL} 

that p ! M  ..... ,U)  

[ L ( a ) O R ( g ) ] F ( Z )  = F ( @ ' Z g )  g~ S,, g E GL( N, C). 

[ R ( g ) F ] ( Z )  = F (  [ z tg t ] )  FE 9 
Z"gn 

where Z, denotes the ith row of Z € C n X N .  Let G'  be the diagonal subgroup Dk of 
GL( n, C) then G' = GL( 1, C) x . . . x GL( 1, C) ( n  times) and it was shown in Klink and 
Ton-That (1989b) that G'  and G form a reductive dual pair on .9 such that under the 
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the form 

where m,, = m,, 1 s i s r, then it was shown in Klink and Ton-That (1989b) that [ k ]  
labels a weight vector with weight ( M ,  . . . , M )  if and only if 
m,.+ . . . +  m , , = n M  m,., -,+ mz,,  - ,+ . . .= (  n - 1 ) M  . . .  m , , = M  (2.12) 
and using the GL( n, @)-invariant differential operators given by equation (3.5) of Klink 
and Ton-That (1989b) to diagonalise the ( M ,  . . . , M)-weight space of V'""', we can 
actually obtain the Gelfand-Zetlin basis vectors in this ( M ,  . . . , M)-weight space. 

The reciprocity theorem in Klink and Ton-That (1989b, corollary 2.9) also shows 
that the number of times the representation with signature ( m )  of GL( n, C) occurs in 
Pp'M.  is given by the number of Gelfand-Zetlin tableaux satisfying the condition 
(2.12). This fact can be stated more precisely as follows. 

Let Ci"M3 . M )  be the n-fold tensor product V(NM>'. .")@. . .O V(hh?303 ,". Then the 
dimension of the reducible representation of S ,  modulo the irreducible representation 
of GL( N, C) with signature ( m )  in the joint S ,  x GL(N, C)-module 9?"M. . M '  is given 
by the number of Gelfand-Zetlin labels satisfying the weight condition (2.1 1) given 
above. 

There are of course many well known formulae giving this dimension starting with 
the Littlewood-Richardson product rule; however, our formulation has a definite 
advantage in that it actually gives an explicit resolution of the S,-multiplicities using 
these Gelfand tableaux and naturally leads to the calculation of Clebsch-Gordan and 
Racah coefficients. 

To further decompose the reducible representation of S, we remark that the 
subspace Ycm) n 9(M,,' ,3M) is usually called the zero-weight space of the GL( n, @)- 
module F'" and that several authors have investigated the decomposition of the 
zero-weight S,-module of the GL(n, @)-module V ( m ) .  Such zero-weight spaces are 
discussed in the next section. 

3. Representations of S .  on zero-weight spaces of G U N ,  C)-modules 

In the context of our problem, representations of the Weyl group of GL(n, C) on 
zero-weight spaces of GL( n, @)-modules can be defined as follows. 

We begin by identifying S ,  with the subgroup of all permutation matrices in 
GL( n, C) via the faithful representation a + [a] E GL( n, C); (+ E S , ,  where [a] is defined 
by [alii = 6i,c(, l ;  1 6  i, j 6 n, 6, being the Kronecker delta. An easy computation shows 
that the normaliser N, of D, in GL( n, C) consists of all monomial matrices in GL( n, C); 
i.e. matrices that have only one non-zero entry in each row and similarly in each 
column. It follows immediately that N, is the semidirect product S ,  @? D, (previously 
called K', in section 1 so that S ,  is identified with the Weyl group W, = N,/D, of 
GL(n, C)). From section 2 we see that any polynomial representation of GL(n, C) 
(respectively, GL( N, C))  can be realised as a GL( n, @)-module (respectively, GL( N, C)- 
module) in 9 ( C n x N )  of the form V ' ( m )  (respectively V'") of (2.4). A vector FE V""') 
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(respectively VI") is called a weight vector with weight ( M , ,  . . . , M,)  (respectively, 
( M I , .  . . , M h  )), M ,  non-negative integers, if 

L ( d - ' ) F = d ; M I . .  . dy ,* t  
(respectively, R ( d ) F  = d ,"I . . . d ,\'\fi 

V d  E D, 
V d  E Dh). 

Obviously the weight vectors in V"" (respectively in VI"') corresponding to the same 
weight ( M )  form a subspace of V""" (respectively V""') which is called the weight 
space V:E,' (respectively If the weight ( M )  is such that M ,  = . . . = M ,  = M, 
then it is called the zero weight and  the corresponding weight space is denoted by 
V,!,"' (respectively, V;"'). (This notation is justified by the fact that if we consider 
v r l m l  (respectively V'") as an  irreducible SL( n, C)-module (respectively SL( N, C)- 
module) then for d E D,, n S L ( n ,  C) (respectively, D,, n S L ( N ,  C)) d y  . . . d: = ldl" = 
1 and  V,!,"'then consists ofall  vectors F E  V"" (respectively VIm))  such that L ( d ) F  = F 
(respectively R ( d ) F =  F ) . )  From section 2 we can see that the zero-weight space of 

is non-trivial if and  only if nM = I (  m)l = m 1  +. . . + m,, so that the zero-weight 
space of V ' ( m i  is unique. Now from the abstract definition it is obvious that V"" is 
invariant under the Weyl group W, = S,,; in fact, it is the only weight space of V""" 
that is W,-invariant. Concretely we can see this as follows. Let FE  Vg""', W E  S, and 
d E D, then obviously f ' d u  E D, and  therefore 

v " m 1  

L( d - ' ) L (  a ) F  = L( a( 6 ' d a ) ) F  
= L ( a ) L ( a - ' d a ) F  
= L(a)ldl 'F 
= I d l * ' ( L ( a ) F ) .  

Thus Vh"' (respectively Vh") can be considered as an  S,-module (respectively, 
S,-module). Now, if V is a GL(n,@)-module we can decompose V in irreducible 
submodules and the zero-weight space V, of V is obviously the direct sum of the 
zero-weight spaces of its irreducible constituents. A particular case of special interest 
to us is the zero-weight space Sb" of the isotypic component of V"" (or of VIm') 
which consists of p copies of the zero-weight space Vg"" if p is the multiplicity of 

Several authors have studied the S,-module Vi"', especially the character xy' of 
S,.  Kostant (1975) pointed out a very useful fact, namely that the value of x;"' on a 
Coxeter element p of W, is either 0 or  2 1  (in our context a Coxeter element can be 
taken as the permutation (12,. . . , n)). Gutkin (1973) showed that V""" can be treated 
as an  induced S,-module. And finally Ariki et a1 (1985) gave a more direct method 
of decomposing Vhm I .  

Using the theorems of Ariki et al, one can obtain in principle a spectral decomposi- 
tion of the zero-weight S,-module V,l"'" by successively following the three steps given 
there. However, in practice, when n becomes large the computation becomes prohibi- 
tive, even with the help of computers. In section 5 we give a procedure, especially 
adaptable to computers, to compute the character x;". 

Vilml in  ylml. 

4. The ring of S,-invariant differential operators on g ( C n x ' )  

As we have seen from sections 2 and 3, the decomposition of the S, x GL( N, C)-module 
reduces to the decomposition of submodules Sb"' = Fm' n ?P('%...-M' when g c M  ..... MI 

( m )  ranges over the signatures of all irreducible representations of GL( N, C) that 
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occur in the GL(  N,  @)-module PIM* And this problem is in turn equivalent to 
the decomposition of the S,-modules V,;"). But in general this decomposition is not 
multiplicity free. For example, the space V~'"4*"'(@3"7) in the next section shows that 
the trivial representation of S3 occurs once and  the two-dimensional representation Ep 
of S3 occurs twice in this five-dimensional zero-weight space. We want, then, to find 
a canonical procedure to label the equivalent representations of S,'that occur in this 
V;"''; i.e. to resolve the multiplicity problem in V;'"'. To d o  this we will construct a 
family of commuting S,-invariant differential operators on 9 which when restricted 
to V;'mJ will diagonalise V;"' and whose distinct eigenvalues can serve as labels of 
the irreducible representations of S, that occur in V;"). We proceed as follows. 

Let Q denote the universal enveloping algebra of differential operators generated 
by the Lie algebra basis {L,,, 1 S a,  p c n }  of GL(n, @ )  given by (2.10); then 021 also 
acts on 9. A differential operator U E "U is said to be S,-invariant if UL((+) = L ( a ) U  
(or  equivalently L(u)  U L ( 6 ' )  = U )  for all U E S,. We have the following theorem. 

Theorem. The S,-invariant differential operators form a subalgebra of Q. This subal- 
gebra is finitely generated and  a set of generators can be given by elements of the form 
U =  U ( L , , ) ~ % s u c h t h a t  U(L,,,,,,,,,,,)= U ( L , , p ) f o r a l l a ~ S , , a n d a l l ~ , p = l  , . . . ,  n. 

ProoJ: Let gl( n, @ )  denote the Lie algebra spanned by the basis element L,,, 1 C a, 
p =s n. Then each element X in gl(n, C) can be written uniquely as 

n 

a,, = 1 
x =  c XapLop x,, E @ 

so that X can be identified with the matrix [ X , , ]  E @",". Let S denote the symmetric 
algebra of all polynomial functions of CnX". Let T denote the coadjoint representation 
of GL(  n, @ )  in S defined by 

[ T ( h ) P l ( X )  = p ( h - ' X h )  h E G L ( n , @ ) , p E S .  

Now, it was shown in Klink and Ton-That (1988) that under the canonical isomorphism 
0 of S onto Du (cf Dixmier 1974, chapter 3)  that an  element @( p )  in 021 is S,-invariant 
if and  only if p ( [ ~ ] - ' X [ a ] )  = p ( X )  for all U E  S,.  If we identify a permutation U with 
a matrix in G L (  n, C )  via the equation 

= ' ! . V , , ,  1 i, j c n 

then an  easy computation shows that 

It follows that a polynomial p ( X )  is S,,-invariant, i.e. p ( a - ' X a ) = p ( X )  V U E S , ,  if 
and  only if expanded in the variables X , ,  1 5  i, j S n, it is invariant under any permuta- 
tion of the indices ( i ,  j ) .  

Let E,J denote the matrix with 1 in the (i, j )  entry and 0 elsewhere and  let (+E S, ; 
then 
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then we have a n  embedding of S,, into S ,,?. This action p extends in a n  obvious manner 
to a linear action on S ( @ " x " ) .  It follows from Springer (1977) that S, is a finite 
reflection group and hence by a theorem of Chevalley (1955) the ring of S,-invariants 

13 is finitely generated by algebraically independent homogeneous elements. 

Remark. The centre of % consisting of differential operators which are G L ( n ,  @)- 
invariants is obviously contained in the subalgebra of all S,-invariant differential 
operators. Therefore, if we let [ L ]  denote the matrix [L,,], 1 S a,  P C n then the 
non-commutative trace operators Tr([ L ] " )  are G L (  n, @)-invariant, and  hence S,,- 
invariant. It is easy to show that there are many S,-invariant differential operators 
that are not G L (  n, C)-invariant; e.g. for n = 3 

! = c L, i 1 ! < T i  2 i Lm 2 !<I, 1 1 L 7 ,  1 ,,,( 2 ! L,,i 1 )<,l 1 ! . (4.1) 
< , C S ,  

5. Computing S, characters on the GL(n, C)-modules V ' ( m )  

As mentioned previously, there are several closed-form expressions giving the character 
of S, on V~"'". However, these formulae are sufficiently complicated that they are not 
very useful from a computational point of view. In  this section we will present a 
method for computing the S, character which is easy to implement from a computational 
point of view, but is too complicated to be able to write down in closed form. We 
conclude this section with two examples, the first of which uses an  S,-invariant 
differential operator of the form discussed in the previous section to break the 
multiplicity. 

In  Klink and  Ton-That (1989a, b )  we showed how to obtain a Gelfand-Zetlin basis 
for V;"' from its highest-weight vector. It follows that if a Gelfand state h!i\' is in 
V;"" and  if U E S,, then 

L ( g ) h t T ] ' =  D[;";[A](u)h[T;  (5.1) 

where D:;i[A] are matrix elements of a reducible representation of S, and the sum is 
over all Gelfand patterns [ k ' ]  of weight ( M ,  . . . , M ) .  Since the h:rl! form an  orthogonal 
basis, i t  is possible to write down the S, matrix elements as 

[ h  1 

The character xb"' is then given by 

x P ' ( a )  = T r ( D ' " ' ( c ) )  

Since the h;;;' are polynomials in 2 and the norms of have been computed (Ho 
Pei-Yu 1966), it is straightforward though tedious to compute the inner products in 
(5.2) and  hence to get the character x:". 

In the remaining part of this section we use (5 .2)  to compute a number of characters 
to illustrate the theory. 
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First we show that the Schur-Weyl duality theorem is a special case of our procedure. 
To see this consider the n-fold tensor product of the representation of GL( N,  C) of 
signature (1,0, . . . , 0). To get the multiplicity of the representation of G L (  N, C )  with 
signature ( m , ,  . . . , m,,, 0 , .  . . , 0) if N s n or ( m , ,  . . . , m,, . . . , 0 )  if n < N we consider 
the weight condition m, +.  . .+ m, = nM = n (since M = 1) and the chain of subgroups 
G L (  N ,  C) 2 G L (  N - 1, C) 2 .  . . 2 GL( 1, 02). In V""'i.~-"'" ( r  = min( n, N ) )  the Gelfand- 
ie t l in  basis elements are h[z \ ' ,  where, for example, in the case n < N 

1 m#,,% . . . 0 . . . 0 
m,..'V-1 mn,,\-, . . .  mn.,+, . . . 0 

m,2 m22 

[ k l =  

are Gelfand tableaux which satisfy the weight condition 

m,,  = m, I G r S n  

m ,  ,_,+...+ m ,,,- , = n - 1  

m ,  , . 2 +  mz , - 2 + .  . . = n - 2  
(5.3) 

m,? + m2? = 2 

m , ,  = 1 

Moreover, each tuple ( m , , ? , .  ) is the signature of an irreducible representation of 
G L ( i ,  C), 1 S i d  N. S , ,  acts on the space VX'", and according to the statement in 
section 2 the dimension of this representation is given by the number of tableaux [ k ]  
satisfying tbe condition (5.3). The N - 1 tuple ( m l , h - , .  . . . , m,,& 0,  . . . , 0) with 
ml , ,  _ ]  +. . . + m,i.b -, = n - 1 corresponding to the signature of an irreducible rep- 
resentatioyi of G L (  n - 1, C) in the n - 1 tensor product 

( l , O , .  . . ,O)O..  . O ( l , O , .  . . , O )  
fl-l 

in turn induces a representation of S , 7 _ l .  Thus, by iterating this process we have a 
chain of subgroups S,, 2 Sn- l  2 .  . .I SI acting on VX'". We prove by induction on i 
that each tuple ( m , , ,  mz , ,  . . .) corresponds to a Young diagram of S,. From (5.3) this 
is obviously true for i = 1 .  Assume this is true for all integers s i  and consider the 
subtableau of [ k ]  of the form 

m,,,+l m2,,-, [ m?.* m2:** ] 
m1.2 11222 

m , ,  
where by the inductive hypothesis each ( m , , ,  m 2 { ,  . . .) corresponds to Young diagram 
of an irreducible representation of S , .  The betweeness relations m,,,,, 3 m l ,  3 m,,,,, 3 
mz,, . . . and the conditions m,,,,, + m2.,+] +.  . . = i + 1, m,,, + m2, ,  +. . . = i show that by 
the branching law for irreducible representations of the symmetric groups (cf Hammer- 
mesh 1962; especially equation (7.521, p 210) that the tuple (m,,,, , ,  m 2 , , + , , . .  .) is the 
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Young tableau of an irreducible representations of S,, ,  . It follows that the representa- 
tion of S, on ( V ' i m ' ) o  is irreducible and its signature is the Young diagram 
( m , ,  m , ,  . , . , m,,  . . .). This is exactly the Schur-Weyl duality theorem. 

Example 1. Consider the threefold tensor product V''."*"'O V'4.0" '10 = 9 ' p 4 4 . 4 . 4 '  

of GL(3, C); the multiplicity of V'8,"0J in this tensor product is 5 and the Gelfand-Zetlin 
basis for ( V"s,430r)o is the set 

By proposition 5.4 of Ariki et a1 (19851, the symmetric representation of S3 must occur 
in the reduction of ( V " s ~ 4 ~ " ' ) o .  By a theorem of Kostant (1975) ~ b X . ~ , ' ) ' ( p )  is either 0, 
1, or -1. From these facts it is easy to deduce that the symmetric representation ps 
must occur in ( V"8,430')o once, and the two-dimensional representation pz must occur 
in ( V"8,4,01)0 twice. To resolve this multiplicity problem, we apply the S,-invariant 
differential operator U'4' of (4.1) to V"83430'. The eigenvalues of this operator are 168, 
270 + 6 m  and 270 - 6 m .  The eigenvalue 168 labels the symmetric representation 
p s ,  the eigenvalue 2 7 0 + 6 v m ,  which occurs with multiplicity 2, labels one copy of 
the two-dimensional representation p2 while 270 - 6 m  labels the other two- 
dimensional representation of pr . (The symbolic manipulation program of Klink and  
Ton-That (1988) was used to compute the eigenvalues of the operator U'"'.) 

Table 1. Results of example  2 

Classes Multiplicity 

representations e ( : 2 j  ( 3 )  (123)  n ( S )  n ( A )  n ( 2 )  

X ,  
X ?  
X 2  

M. M.0, &f = 1 

3 
5 
7 

9 
11 
13 

2 
4 

6 
8 

10 

12 
14 
16 

1 
1 
2 

2 

4 
6 
8 

I O  
12 
14 

3 
5 

7 
9 

11 

13 
15 
17 

1 
-1  

0 

0 

0 
0 
0 

0 
0 
0 

1 
1 

-1  

- 1  

1 
0 

-1  

1 
0 

- 1  

0 
-1 

1 
0 

- 1  

1 
0 

-1  
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Example 2. In this example we consider the threefold tensor product of an  arbitrary 
irreducible representation of SU(2) labelled by an  integer or half-integer j. This 
representation corresponds to the representation of GL(2, C) of signature ( M ,  0) with 
M = 2j. Then the number of times the representation j of SU(2) occurs in the tensor 
product is given by the number of Gelfand patterns 

M rM M 
M + I  M - 1  '1 O C I S M  

which is obviously equal to M i -  1, so that the Gelfand-Zetlin basis for ( V " ) o =  
( )" is the set l 

("(2'r v f i  \' L r - 1  '')i . 
I /  / = il M 

A concrete realisation of these basis elements in the Fock space 9 ( C 3 x 2 )  can be given 
in the following way. Let Z E  C=3x2 and denote by A;(Z) the (i, 1)-entry of 2, 1 s i s 3 ,  
Let A y 2 ( Z )  denote the minor of Z formed by the rows i , j  and  the columns 1,2. Then 
an  orthogonal basis for ( is 

o (Z)=[A:(Z)A:~(Z)]"-'[A.f(Z)A~:(Z)+A~(Z)A~:(Z)]'. 

i v + i  M-i 

Using equation (5.2) then gives x ( e )  = M +  1 and x( (12) (3) )  = Z E o  (-l)M-'; the com- 
putation of ,y( 123) is more complicated and will not be given here. From the expression 
for multiplicity we get the results presented in table 1. 

6. Conclusion 

We have given a computa1,onally effective procedure to resolve the multiplicity of 
irreducible representations of the symmetric group S, occurring in repeated tensor 
products of U( N )  (GL(  N, C ) )  representations of the form ( M O .  . . 0 ) .  We are develop- 
ing symbolic manipulation programs which generate the Gelfand-Zetlin tableaux and  
the resulting reducible characters of S,; in fact the examples at the end of section 5 
were carried out using such programs. 

If in a tensor product decomposition the multiplicity of an S, irreducible representa- 
tion is greater than 1, invariant operators from the enveloping algebra of GL(n, C) 
which commute with S, may be introduced to break the S, multiplicity. In section 4 
we showed that such invariant operators are finitely generated, and  gave their general 
form. Given an  invariant operator, it is still necessary to diagonalise the operator; we 
are also developing computer programs to compute the relevant eigenvalues and  
eigenvectors of the multiplicity-breaking invariant operators. 

All of the operations for obtaining basis elements that transform irreducibly under 
S, and GL(  N, C )  start with polynomials associated with Gelfand-Zetlin tableaux. 
That is, for each Gelfand-Zetlin tableau there is a polynomial element in the zero-weight 
space, the intersection of the isotypic component of GL(  N, C) x . . . x GL( N, C) and  
GL( n, C) x GL( N, C). These polynomials form a basis for a reducible representation 
of S,.  By taking suitable linear combinations of these basis elements so that they 
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transform irreducibly under S,, it is possible to compute Clebsch-Gordan coefficients 
which carry S, labels rather than intermediate coupling labels, as is usually the case 
when computing Clebsch-Gordan coefficients of n-fold tensor products in a stepwise 
fashion. Such symmetric group labelled Clebsch-Gordan coefficients are obtained by 
taking the inner product of the symmetric group labelled basis polynomials with tensor 
product basis polynomials; in our procedure computing an inner product means 
differentiating the polynomials in a certain way (see Klink and Ton-That 1989a). 
Clebsch-Gordan coefficients carrying S,, irreducible representation labels will be dis- 
cussed in a subsequent publication. 

In this paper we have only examined the symmetric group content of n-fold tensor 
products of U (  N )  representations of the form ( M ,  0, . . . , 0). It is possible to generalise 
our results to arbitrary irreducible representations of the form ( M ,  , M ? ,  . . . , M , ,  
0, .  . . , O ) =  ( M j  with 1 6  r-4 N. In  this case the dual to GL(N, Cj x . .  . x GL(N,  C) is 
GL(  r, C) x . . . x GL( r, C) ,  and  when the outer product group is restricted to the diagonal 
subgroup, the dual becomes GL(  rn, C). The Fock space is thus 9(@,,,, ) and can be 
decomposed into isotypic components 3, M ,  or 9 ( m ) ,  where ( m )  = ( m ,  , . . . , m v )  is 
a n  irreducible representation of GL(  N ,  C) and GL( rn, C 1. Using operators from the 
Lie algebra of GL(m,  C), elements from the irrducible representation space V""' of 
GL(  N, C) can be mapped into 9, 2.f / .  Then the symmetric group S,, leaves the 
zero-weight space 9, ,n, n 9, l invariant. Since S,, is a subgroup of S,,,, it is clear that 
the reducible representation of S,,, on 5, ,,, n 9, M ,  is also a reducible representation 
of S,.  Procedures for obtaining the multiplicities and  basis elements of irreducible 
representations of S,, will be given in a future paper. 

In  a similar fashion i t  is also possible to obtain the symmetric group content of 
n-fold tensor products of repeated representations of other compact groups, considered 
as subgroups of GL(N,  C). For example, the dual group to SO( N )  is the symplectic 
group. If ( M )  is an irreducible representation of GL(  N ,  C) the irreducible representa- 
tions of S O ( N )  contained in ( M )  are obtained from lowering operators in the Die 
algebra of the symplectic group which annihilate elements in the space labelled by 
( M I .  n-fold tensor products of SO( N )  come from the diagonal subgroup of SO( N )  x 
. . . x SO( N ) .  The dual to the diagonal subgroup SO( N )  wvlil be a big symplectic group 
containing the outer product symplectic groups. Using raising operating from the Lie 
algebra of the symplectic group, elements can be mapped into the n-fold tensor product 
space, which again carries a reducible representation of S,. In fact a generalisation 
of the Schur-Weyl duality theorem for the orthogonal and symplectic groups was given 
in Wenzl (1988) but one has to consider Brauer's centraliser algebras instead of groups 
(S ,  in the classical case). 

Thus it is clear that as soon as the dual to a compact subgroup of GL( N, C) is 
known, it is possible to find the S, content of n-fold tensor products of repeated 
representations of that subgroup. Methods for carrying out such procedures for various 
compact groups will be given in subsequent publications. 

References 

Ariki S. Matsuzawa J and Terada I 1985 Algebraic and Topological Theories-To the Memory of Dr Tukehiko, 

Chevalley C 1955 Am. J.  Math. 67 778 
Dixmier J 1974 Alg6bre.y Enueloppantes (Paris: Gauthier-Villars) 
Gutkin E A 1973 Lisp. Mar. Nauk. 28 237 

M I Y A T A  546 (Tokyo:  Kinokuniya) 



Representations of S,, x U ( N )  2763 

Hammermesh 1962 Group Theory ( N e w  York: Addison-Wesleyl 
Ho Pei-Yu 1966 Orthonormal  base and  infinitesimal operators of irreducible representations of group U,, 

Howe R 1985 Applications o f G r o u p  Theor?. in Ph,,.rics and Marhematical Ph!,sicr bo1 21 ed  M Flato, P Sally 

- 1987 Proc. Ind. Aead. Sci. ( Math. Sci. 1 97 85 
Klink W H a n d  Ton-That  T 1988 J .  Phys. A :  Math. Gen.  21 3877 
- 1989a 1. Comp.  Phys. 80 453 
- 1989b J .  Funct. Anal.  84 1 
Kostant B 1975 Ado. Math. 20 257 
Moshinksy M a n d  Quesne C 1970 J.  Math. Phy,. 11 1631 
Springer TA 1977 Invariant Theory (Lectures Nores in Math. 585)  (Berlin:  Springer) 
Wenzl H 1988 Ann. Math. 128 173 
Weyl H 1946 The Classical Groups, Their Incarianrs and Represenrations (Princeton, NJ:  Princeton Unibersity 

Zelobenko D P 1970 Compact Lie Groups and h e i r  Representations (Moscow: Nauka)  ilSngl trans1 1973 

Se. Sinica 15 736 

and  G Zuckerman (Providence, RI: A M s )  

Press) 

Trans/. Marh. Monographs vol 40) (Providence, R I :  A M s )  


